Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 140(32): 10169-10178, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30070469

RESUMO

The metal-to-ligand charge transfer excited states of [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) may be deactivated via energy transfer or electron transfer with ferrocene derivatives in aqueous conditions. Stern-Volmer quenching analysis revealed that the rate constant for [Ru(bpy)3]2+ excited-state quenching depends on solution pH when a ferrocenyl-amidinium derivative (Fc-am) containing a proton-responsive functionality tethered to the ferrocene center was present. By contrast, the rate constant with which the [Ru(bpy)3]2+ excited state is quenched by an analogous ferrocene derivative (ferrocenyl-trimethylammonium, Fc-mam) that lacks a protonic group does not depend on pH. These results show that the presence (or absence) of a readily transferrable proton modulates quenching rate constants in bimolecular events involving [Ru(bpy)3]2+ and ferrocene. More surprisingly, transient absorption spectroscopy reveals that the mechanism by which the [Ru(bpy)3]2+ excited state is quenched by Fc-am appears to be modulated by solution proton availability, switching from energy transfer at low pH when Fc-am is protonated, to electron transfer at high pH when Fc-am is deprotonated. The mechanistic switching that is observed for this system cannot be aptly explained using a simple driving force dependence argument, suggesting that more subtle factors dictate the pathway by which the [Ru(bpy)3]2+ excited state is deactivated by ferrocene in aqueous solutions.


Assuntos
Metalocenos/química , Compostos Organometálicos/química , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Cinética , Análise Espectral , Termodinâmica
2.
ACS Catal ; 8(4): 2857-2863, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-30984470

RESUMO

Ionic liquids (ILs) have been established as effective promoters for the electrocatalytic upconversion of CO2 to various commodity chemicals. Imidazolium ([Im]+) cathode combinations have been reported to selectively catalyze the 2e-/2H+ reduction of CO2 to CO. Recently our laboratory has reported energy-efficient systems for CO production featuring inexpensive bismuth-based cathode materials and ILs comprised of 1,3-dialkylimidazolium cations. As part of our ongoing efforts to understand the factors that drive CO2 reduction at electrode interfaces, we sought to evaluate the catalytic performance of alternative ILs in combination with previously described Bi cathodes. In this work, we demonstrate that protic ionic liquids (PILs) derived from 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) effectively promote the electrochemical reduction of CO2 to formate (HCOO-) with high selectivity. The use of PILs comprised of the conjugate acid of DBU, [DBU-H]+, efficiently catalyzed the reduction of CO2 to HCOO- (FEFA ≈ 80%) with significant suppression of CO production (FECO ≈ 20%) in either MeCN or MeCN/H2O (95/5) solution. When they were used in combination with [DBU-H]+-based PILs, Bi-based cathodes achieved current densities for CO2 reduction (j tot ≈ 25-45 mA/cm2) that are comparable to or greater than those reported with imidazolium ILs such as [BMIM]PF6. As we demonstrate herein, the selectivity of the 2e- reduction of CO2 toward HCOO- or CO can be dictated through the choice of the IL promoter present in the electrolysis solution, even in cases in which the same electrocatalyst material is studied. These findings highlight the tunability of bismuth/IL systems for the electrochemical reduction of CO2 with high efficiency and rapid kinetics.

3.
Polyhedron ; 135: 134-143, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30983680

RESUMO

A series of bis-NHC pincer complexes of palladium(II) have been prepared and characterized. These pyridyl-spaced dicarbene complexes ([(PDCR)Pd(MeCN)](PF6)2 ) were synthesized with substituents of varying steric bulk at the wingtip positions, which include R = methyl, ethyl, isopropyl, cyclohexyl, mesityl and 2,6-diisopropylphenyl. The synthesis of this library of complexes was accomplished either by direct metallation of the prerequisite pyridyl-spaced bis-imidazolium proligands with Pd(OAc)2 or via treatment with Ag2O to afford the corresponding silver carbenes, which were then transmetallated onto palladium. Solid-state structures for each of the [(PDCR)Pd(MeCN)](PF6)2 derivatives were obtained via X-ray crystallography and allowed for the steric properties of each PDCR ligand to be evaluated by two methods. These analyses, which included calculation of the percent buried volume (%VBur) and solid angles of the PDCR ligands, served to characterize the steric environment around the palladium center in each of the complexes that was prepared. Finally, voltammetry and controlled potential electrolysis studies were performed to characterize the redox chemistry of the [(PDCR)Pd(MeCN)](PF6)2 derivatives and assess if they could electrocatalyze the reduction of CO2. The influence of the steric properties of the PDCR ligand on the electrochemistry of the resulting complexes [(PDCR)Pd(MeCN)](PF6)2 is also discussed.

4.
J Am Chem Soc ; 137(15): 5021-7, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25697668

RESUMO

The development of affordable electrocatalysts that can drive the reduction of CO2 to CO with high selectivity, efficiency, and large current densities is a critical step on the path to production of liquid carbon-based fuels. In this work, we show that inexpensive triflate salts of Sn(2+), Pb(2+), Bi(3+), and Sb(3+) can be used as precursors for the electrodeposition of CO2 reduction cathode materials from MeCN solutions, providing a general and facile electrodeposition strategy, which streamlines catalyst synthesis. The ability of these four platforms to drive the formation of CO from CO2 in the presence of [BMIM]OTf was probed. The electrochemically prepared Sn and Bi catalysts proved to be highly active, selective, and robust platforms for CO evolution, with partial current densities of jCO = 5-8 mA/cm(2) at applied overpotentials of η < 250 mV. By contrast, the electrodeposited Pb and Sb catalysts do not promote rapid CO generation with the same level of selectivity. The Pb material is only ∼10% as active as the Sn and Bi systems at an applied potential of E = -1.95 V and is rapidly passivated during catalysis. The Sb-comprised cathode material shows no activity for conversion of CO2 to CO under analogous conditions. When taken together, this work demonstrates that 1,3-dialkylimidazoliums can promote CO production, but only when used in combination with an appropriately chosen electrocatalyst material. More broadly, these results suggest that the interactions between CO2, the imidazolium promoter, and the cathode surface are all critical to the observed catalysis.

5.
J Am Chem Soc ; 136(23): 8361-7, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24783975

RESUMO

The development of inexpensive electrocatalysts that can promote the reduction of CO2 to CO with high selectivity, efficiency, and large current densities is an important step on the path to renewable production of liquid carbon-based fuels. While precious metals such as gold and silver have historically been the most active cathode materials for CO2 reduction, the price of these materials precludes their use on the scale required for fuel production. Bismuth, by comparison, is an affordable and environmentally benign metal that shows promise for CO2 conversion applications. In this work, we show that a bismuth-carbon monoxide evolving catalyst (Bi-CMEC) can be formed under either aqueous or nonaqueous conditions using versatile electrodeposition methods. In situ formation of this thin-film catalyst on an inexpensive carbon electrode using an organic soluble Bi(3+) precursor streamlines preparation of this material and generates a robust catalyst for CO2 reduction. In the presence of appropriate imidazolium based ionic liquid promoters, the Bi-CMEC platform can selectively catalyze conversion of CO2 to CO without the need for a costly supporting electrolyte. This inexpensive system can catalyze evolution of CO with current densities as high as jCO = 25-30 mA/cm(2) and attendant energy efficiencies of ΦCO ≈ 80% for the cathodic half reaction. These metrics highlight the efficiency of Bi-CMEC, since only noble metals have been previously shown to promote this fuel forming half reaction with such high energy efficiency. Moreover, the rate of CO production by Bi-CMEC ranges from approximately 0.1-0.5 mmol·cm(-2)·h(-1) at an applied overpotential of η ≈ 250 mV for a cathode with surface area equal to 1.0 cm(2). This CO evolution activity is much higher than that afforded by other non-noble metal cathode materials and distinguishes Bi-CMEC as a superior and inexpensive platform for electrochemical conversion of CO2 to fuel.


Assuntos
Bismuto/química , Dióxido de Carbono/química , Monóxido de Carbono/química , Catálise , Eletricidade , Técnicas Eletroquímicas , Eletrodos , Oxirredução
6.
J Am Chem Soc ; 135(24): 8798-801, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23735115

RESUMO

The wide-scale implementation of solar and other renewable sources of electricity requires improved means for energy storage. An intriguing strategy in this regard is the reduction of CO2 to CO, which generates an energy-rich commodity chemical that can be coupled to liquid fuel production. In this work, we report an inexpensive bismuth-carbon monoxide evolving catalyst (Bi-CMEC) that can be formed upon cathodic polarization of an inert glassy carbon electrode in acidic solutions containing Bi(3+) ions. This catalyst can be used in conjunction with ionic liquids to effect the electrocatalytic conversion of CO2 to CO with appreciable current density at overpotentials below 0.2 V. Bi-CMEC is selective for production of CO, operating with a Faradaic efficiency of approximately 95%. When taken together, these correspond to a high-energy efficiency for CO production, on par with that which has historically only been observed using expensive silver and gold cathodes.


Assuntos
Bismuto/química , Dióxido de Carbono/química , Monóxido de Carbono/química , Carbono/química , Catálise , Eletricidade , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...